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Universality of level correlation function of 
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Abstract. The statistical properties of spane random matrices ensembles are investigated 
by means of a supersymmetric approach with the use of a functional generalization of the 
Hubbard-Stratonovich (HS) transformation. W h e n  used to calculate the density of states 
the method is ihown to be absolutely equivalent to the replica trick. The model turns out 
to bear a close resemblance to the Andenon model on the Bethe lattice: it possesses a 
delocalization transition that occurs with an increase in the 'mean connectivity' parameter. 
In the delocalized phase the level-level correlation function proves to have a universal 
(Dyson) farm with the full density of states replaced by the contribution from the infinite 
cluster. 

1. Introduction 

The problem of level correlations of large random matrices ( RM) has been investigated 
intensively since the early 1950s [l-61. There has been a considerable growth of interest 
in this problem in the last decade due to the wide range of applications of R M  theory 
to different branches of physics [7-91, the theory of mesoscopic fluctuations in disor- 
dered conductors [IO] and the quantum mechanical aspects of chaos [ l l ]  can be 
mentioned as examples in this respect. 

The case of independent, identically distributed matrix elements is the simplest to 
investigate. Assuming the distribution to be Gaussian three different R M  ensembles 
introduced by Wigner and Dyson are possible: the orthogonal ensemble (symmetric 
matrices), the unitary ensemble (Hermitian matrices) and the symplectic ensemble 
[4-61. Expressions for the eigenvalue correlation functions for these ensembles were 
presented in [2-41. Dyson put forward the hypothesis that the form of the pair 
correlation function of RM eigenvalues is universal, i.e. it does not depend on the 
probability distribution of the RM elements and is determined by matrix symmetry 
only. By using reasonable assumptions of different kinds this universality has been 
proved in a number of papers [4,12]. 

Efetov [13] suggested a method for investigating R M  properties based on supersym- 
metry which would enable the expressions for the eigenvalue correlators for the 
previously mentioned ensembles to be derived more rigorously [13, 141. Fairly recently 
a new kind of ensemble (that of sparse R M )  attracted the attention of physicists 
[ 15,161, due to its close connections with some spin-glass models [ 171, and combinatoric 
optimization problems [ 181. These N x N (N + m) real symmetric matrices have a 
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finite mean number p of non-zero elements per row. The density of states (DOS) for 
such an ensemble was investigated in [I51 by means of the replica trick, and an integral 
equation was obtained giving the basic possibility of extracting the DOS. An iteration 
of this integral equation resulted in a perturbative expansion for the DOS in powers 
of Ilp, with the leading term reproducing the DOS of the Gaussian orthogonal ensemble 
(GOE) (Wigner semicircular law). It is natural to study the question of the applicability 
of the Dyson universality hypothesis to the ensemble of sparse RM. This is the main 
subject of the present paper. 

As demonstrated in section 2, the ensemble of sparse RM is the only non-trivial 
ensemble with independent identically distributed matrix elements that differs from 
the Gaussian one. Besides, one of its interesting properties is the disintegration of a 
random matrix into disconnected blocks of finite (i.e. much less than N )  dimension 
(finite clusters) when p < p c =  1. Clearly, this should result in the absence of eigenvalue 
correlations at distances of the order of I/N. When p > p c  a connected block of 
dimension D- N appears (infinite cluster). It is far from being clear whether the 
Dyson universality [4,12] is maintained under these conditions. All this gives a special 
interest to the problem under investigation. Let us remind the reader that in accordance 
with [I41 the eigenvalue correlator could not be calculated correctly be means of the 
replica trick. So, we use a supersymmetric approach to the problem following the ideas 
in [13,14]. 

The outline of the paper is as follows. In section 2 within the scopeof supersymmetric 
approach we rederive an integral equation which gives rise to the possibility of extracting 
the DOS which was previously derived in [15] by the replica trick. A power expansion 
in p<< 1 reproduces a contribution of finite clusters into the DOS. Section 3 is devoted 
directly to the calculation of the level correlator. The similarlity between the Anderson 
model on the Bethe lattice and the model under investigation is revealed and it is 
shown that the level-level correlation function has the Dyson form within the delocal-' 
ized phase with the full DOS being replaced by the infinite cluster contrihution to it. 

When we had completed this work we learnt about a paper by Rodgers and De 
Dominicis [19], where a supersymmetric method was applied to the calculation of the 
DOS of sparse RM. However, the authors of [ 191 were able to show the equivalence of 
the supersymmetric and replica approaches only when p + m. A comment on this issue 
is the subject of a separate publication [20]. The problem of calculating the level 
correlation function was not addressed in [19]. 

A D Mirlin and Y V Fyodoroo 

2. The density of states 

\?(e are going to study the statistical properties of a real, symmetric N x N matrix 
H (N + m) whose elements H, (= Hji) are independent, identically distributed random 
variables, with a certain even probability distribution function f ( H , ) .  As usual, it is 
convenient to require the characteristic magnitude of the eigenvalues Ai to be of the 
order of unity. Then E, H i  = Tr H 2  = E; h f  - N and therefore (Hi) - N-I, where 
angular brackets denote an averaging over the distribution function f: A general form 
of f (  H,) satisfying that condition is 

f ( z ) = ( l  - a ) & ( z ) + a h ( z )  0s a <  1 (1) 

where it is assumed that h ( z )  has no &like singularity at z = 0 and R I h ( z ) z 2  d r  - N - ' .  
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a - N-" B = h(z ) z2  d z -  Ne-'  0 s a s - l .  (2) J 
The DOS of a random matrix H g  within the scope of the supersymmetric approach is 
given by the following expression [14,21]. 

a 
p ( E ) = ( 2 r N ) - '  Im-((Z(E,J))I,=, aJ 

where 

is a supervector with two real commutative components S{",  Si2) and two Grassmannian 
components xi, x?; = dSI1' dSi2' dxT dxi 

K =  

0 0  0 - 1  
and f is the identity matrix?. By averaging we get 

(= (E ,  J)) = I u [ d & ]  exp[ 2: +t(Ei+Jk)+i +E In 
i j  

Then condition (2) can be represented in the following form 

(5) h ( z )  = h,(ZN'1-"' /2)N(l~")/2 

where h,(z)-l when 2-1. Then 

Depending on the value of a, two essentially different cases in equation (6) are possible. 
For (I < 1 and N + m we can truncate the series expansion to the first non-vanishing 
term. So we have 

In(enp( - Hv+T+j) )  = - aN"-' (+t+j )2[  z 2 h , ( z )  dz. (7) 

Therefore, in case a < 1 any ensemble (1) is equivalent to the Gaussian one with the 
distribution 

where u = a N " j h , ( z ) r 2 d z =  NaIh(z)zZdz .  

t To find the definitions of supervectors and simplest rules of handling them see e.g. [13,21,22] 
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Thus, the only non-trivial (i.e. irreducible to Gaussian) case is U = 1. Setting 
a=p/N,  p-1,  N - t m  we get from equations (4)-(6): 

( Z ( E , J ) ) =  1 n[d4 ,1  exp( iZ  + : ( E f + J b , + & F  [K(4:4,)-11] (8) 

i ( z )  = h ( t )  exp(-itz) dr. I 
To proceed further we have to decouple the variables 4, connected with different 

sites i. The authors of papers [ 15,191, following the method developed in [23], expanded 
function h‘ as a power series and decoupled every term by the introduction of auxiliary 
variables (Hubbard-Stratonovich (HS) transformation) in the usual way. The integra- 
tion over the auxiliary variables could be performed for N +  00 by the steepest descent 
method resulting in an infinite set of coupled saddle-point equations. Introducing a 
generating function one succeeds in rewriting this set in terms of a single integral 
equation. 

Instead of the previously mentioned procedure we suggest using a functional 
generalization of the HS transformation: 

I D g  exp( - T I [dJIl[d$’Ig($)C(JI, V)g (u” )+pI  d[$lg($)v($)] 

=exp(& I [d$l[d$’lv($)C-’($, $’)U($’)] 

(9) 

where C-‘(JI, $’) denotes the kernel of an integral operator inverse to those with kernel 

Inserting in this identity U( J I )  = XE, S( JI - 4,) and choosing kernel C-’(  e,+) to 
C(JI, $9. 

be equal to a function i (8+4) - l ,  we come to the following expression: 

where C(JI, JI’) is determined by the relation 

~ ~ d ~ I C ( + , ~ ) [ ~ ( x ~ r ) ) - 1 1 = ~ ( 4 ,  7) 

S(+, 7) being &function in the space of supervectors. 
It can be proved that the integral operator with the kernel i ( + + x ) - l  can be 

inverted in the space of even functions g(4) .  We discuss this matter in more detail at 
the end of this section. 

Using (10) we transform (8) to the form: 
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Performing the functional integration over g for N +cc by the steepest descent method, 
we get (for J = 0 )  the following saddle-point equation for the function ~ ( 4 ) :  

In viey of fhe invariance of equation (13) with respect to the transformation 
g(q5) + g( T+), T being an arbitrary unitary supermatrix, it is natural to search for its 
soiution as a function o i the  invariant +++ = s '+ ix*x;  s'= ( s ~ . ' ) ~ + ( s ~ ~ ' ) ~ .  in this 
case the denominator in equation (13) turns out tn be unity (the general problem of 
an integration of invariant functions over supervectors was considered in detail in 
[ 14,241). Since g( 4+4 ) = g( S 2 )  + 2x*x$(S2) equation (13) after the integration over 
Grassmannian components of the supervector 4 takes the form 

,^,,,., __,,/_, 

The DOS is related to the function g ( S 2 )  as follows 

2 
p ( E )  = -- Re $ ( O )  

T B  

Here and afterwards in this section a prime denotes the derivative of- a function over 
its argument. 

Equation (14) was obtained i n  [ 151 by the replica trick with an additional assumption 
that the solution to the problem is replica symmetric. In some way a supersymmetric 
approach could he considered as a specific variant of the replica approach with half 
the replicated fields being anticommutative variables. From this point of view our 
assumption that g is a function of +++ oniy seems to be equivaient to a repiica 
symmetric ansatz. Unfortunately, we are unable to prove the absence of solutions 
without this symmetry, but we believe, that it is the only 'symmetric' solution that is 
relevant for the problem under consideration. The authors of [19] sought a solution 
of equation (13)  in a more general form 

g(4) =A(S2)+2x*xB(S2) (16) 

that results in three coupled equations for the functions A, B and 2, where 2 denotes 
the denominator on the right-hand side of equation (13). One can easily make sure 
that the condition A'=  B is consistent with that system of equations and reduces it to 
a single equation equivalent to equation (14). Therefore, we have shown that the 
supersymmetric approach is absolutely equivalent to the replica trick for the problem 

Let us now discuss the question of the existence of the quantity C, defined as the 
kernel of the operator inverse to i- 1 (see equation ( 1 1 ) ) .  Such an inversion could be 
performed only in the absence of zero eigenvalues of the operator h - 1. According to 
the definition, eigenfunctions f and eigenvalues A of that operator satisfy the following 
equation 

-c,."l,,..l"*:n" ..f ,I.- rla..̂ :t.. "f Ct"+PC 
Y, I a L C Y l a l . Y Y  Y L  ,.,r UC.".LJ Y. I L V L I I .  

[d$l{ i (4+$)-  l l f ($)=Af(+l .  (17) 

Let us look for eigenfunctions in a general form 

f(4) = j , ( S ( I ) ,  S"')+f2(S(" 1 S'2' )x * x, 
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Performing the integration over Grassmanian variables x*,  x we reduce equation (17) 
to the system of integral equations: 

A D Mirlin and Y V Fyodorov 

Taking into account the invariance of this system with respect to 0(2)-rotations we 
should look for its solution in the form: 

f;(s) =f?"(s') exp(im4,) 1 = 1 , 2  

where @s is the polar angle of the vector S; and m is an integer number. 

- im 1 d R R  1 drh(z)[J,(zRS)-6,,]f:"'(R2)=Af?fI"'(S2) 
-i" 1 d R R  I dzh(z)Jm(zRS)f~""(R2))=Af~"')(S2). 

Performing the integration over angular variables we get 

(20) 

Due to the fact that h ( z )  = h ( - r )  the left-hand side of equations (21) vanishes for odd 
m and anyf$"(S2), so A = O .  That means, that we should consider the operator i- 1 
acting within the space of even functions f(S) = f ( - S ) .  

For even m # 0 andspecial form ofdistribution function h(z)  =f[6(z - 1 ) +  S ( z +  1)] 
investigated in [15,19], an integral transform in the left-hand side of equation (20) is 
nothing but the well known Hankel transform and we immediately find that A = + l .  
It is easy to show that A = il for m = 0 as well. It is possible to prove the absence of 
zero modes for more general distribution functions h(z) also, so that an operator 
inverse to (-1 exists in the space of even functions for any reasonable distribution 
function h(z). 

As previously mentioned, equation (14) was investigated in [IS] in the limit of 
p >> 1, the leading term of an expansion in a power series of l l p  reproduces the Wigner 
'semicircular' law for p ( E ) .  The tails of the DOS are described by an expression which 
is non-perturbatiove with respect to l l p  (-exp(-p)). 

It seems useful to us to study equation (14) for small p << 1 as well. Let us write its 
solution as a power series 

g( S2) = g'"'( S2) + pg'"( S2) +p'g(''( S2) + . . . (21) 

Solving equations (14) by iteration we get 

and so on. For the DOS we have correspondingly 

p ( E ) = p ' O ' ( E ) + p p ' l ' ( E ) + p 2 p ' 2 ' ( E ) +  ... (23) 

p@'( E )  = 6 (E)  p " ' ( E )  = h ( E )  - S ( E ) ,  . . . . (24) 
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This expansion is quite transparent and corresponds to step-by-step consideration of 
contributions of finite clusters of growing range. The simplest cluster corresponding 
to a row with all elements equal to zero gives the contribution to p ( E )  of the form 
exp(-p)S(E) = ( I  - p + .  . .)a(€). The following cluster is generated when two sites 
break away: J,. # 0; Jmi = 0 for any i # n and Jnj = 0 for any j # m. Its contribution to 
p ( E )  has the form - p  exp(-Zp)h(E). Evidently, these contributions are reproduced 
correctly by (24). We should remark that the infinite cluster arises only above the 
percolation threshold pc = 1 and gives no contribution to the series expansion in powers 
of p .  Meanwhile, contributions of finite clusters are not taken into account by the series 
expansion in powers of I/p of [15], as they have a non-perturbative form with respect 
to l j p  (they are proportional to e-“p)). 

3. Level correlation function 

Let us determine a correlator of eigenvalues in a standard way 

where 

K,..(E, r ) =  K ( E ,  r ) -  N - 2 ( T r ( € , - ~ ) ~ ’ ) ( T r ( € 2 - ~ ) - ’ )  

K ( E ,  r )  = N-2(Tr (E ,  - f i ) - ’  Tr(E,- fi)-’) 
E,=€+-+iE 

(26)  
r r 

Ez = E ie E + +O. 
2 N  2 N  

Introducing a double set of variables +is), s = 1,2, we can write K ( E ,  r )  in the form 

(27) 
J2 

a J  J 
K ( E ,  r )  = ( 2 W 2  ( I )  J‘21 (Z(E, 7, J”’))~P=o 

For the sake of convenience we will omit the symbol of the identity matrix I henceforth. 
Averaging equation (28) we get 

where we have united supervectors +!.”. s = 1 , 2  into a single eight-component super- 
vector 
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and i, .f are now diagonal 8 x 8  matrices with elements L, and J‘” correspondingly. 
Now we can us: the functional generalization of the HS transformation in (IO) again, 
but with &+TL+,) substituting for i(+T+,) .  As a result we obtain: 

A D Mirlin and Y V Fyodorov 

WE, r, J ) )  = / Dg exp(-? / Cd+l[d+‘ld$)C($, @’)g(JI ’)+ N In / [d+l 

Then the saddle-point equation has the following form: 

~ [ d ~ l [ ~ ( + + i + ) - l l  exp[ ( i /2 )E++i+- (~ /2 )++++~g(+) l  (31)  

The structure of equation (31) suggests an idea to seek, its solution in the form of a 
function of two invariants: g,(x, y ) ;  x = +++, y = ++L+. Then the denominator in 
equation (31)  turns out to be equal to unity for the same reason as in equation (13). 

It is easy to notice that equation (31) is jnvariant (for E + 0) with respect to a 
transformation g(+) + g( T+),  a supermatrix T satisfying the condition 

g(’)= j [d+ l  ~XP[(~/~)E++L+-(E/~)++++P~(+)] 

f+if = i. (32) 
Thus, if go(+++, $+&) is a saddle-point, then equation (31) is satisfied as well by 
any function g T ( + )  of the following form: 

P A + )  =gd++f+f+, ++&I. (33) 

Therefore there is a whole family of saddle-point functions g T ( $ )  giving a contribution 
to the integral (30) calculated by the steepest descent method. To separate the integra- 
tion over that manifold in an explicit way, it is convenient to make a shift in a variable 
g(+) under sign of integral (30): 

Then equation (30) reduces to the form 

According to the definition of the kernel C($ ,  $’)(cf (11))  we have 

where indices a, p = I , .  . . , 8  in equations (37)  and (38) number components of super- 
vectors. It goes without saying that the difference between left and right derivatives in 
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equation (38) make sense only for the differentiation with respect to Grassmannian 
components of a supervector. 

Inserting equation (33) into (38) we have 

where 

Using equations (37) and (39) we transform (35) into the following form: 

where symbol Str stands for the supenrace [13,21,22]. 
Now it is necessary to dwell on the question about a region and a measure of 

integration in (35) and (40). Applied t o  Gaussian ensembles this was originally 
considered by Efetov [13] and it was then carefully worked out in [14,21,24]. The 
ana!ysis carried ozt!hcre !Ems oEt to be app!icab!e!o oor case 2nd shows thz! a region 
of integration is the graded coset space UOSP(2,2/2,2)/UOSP(2, 2) x UOSP(2,Z) and 
Dw( T )  is the corresponding invariant measure. 

Before obtaining the final expression for K ( E ,  r )  we find the expression for the 
DOS in terms of the functions g,(x, y). We have (cf (3)  and (15)) 

The general method of calculation of integrals over graded coset space was presented 
in [14; 21; 241. For the present case it reduces to the fact that the integal in (41) 
is equal to the integrand with the matrix 'f replaced by the identity matrix. 
Finally we obtain 

ThZr a~--~-~:.... hoe o tn-r -nm-t  -PII-I-R 1nrln.A C A  I ~ n n  o r  - l f i )  A n e r  
1,110 b"),,C""L"" ,,'.a 0 q u ' L c  L 1 P B ' " p Y ' " " L  ,I. b O L ' L n . 6 .  ..IYCC", 1" ."..E P1 p,u, -"La l,"L 

change on a sckle of the order of N-', we can let r tend to infinity keeping r<< N 
during the calculation. Then it is the single saddle-point function go(x, y )  that con- 
tributes to the integral (30) for ( Z ( E ,  r, J ) ) .  Calculating this integral by the steepest 
descent method we come back to the expression (42). 

Returning to the computation of the correlator K ( E ,  r )  we have from (27) and (40): 
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Subtracting a disconnected part of the correlation function 

4 
K d i n c ( E , r ) = K ( E ,  * - * c o ) = ~ ( g & - g & )  

we get 

This result coincides exactly with the corresponding expression for the Gaussian 
orthogonal ensemble obtained by means of a supersymmetric approach [13, 14,211 
with a natural replacement of the density of states of GOE by p ( E )  from (42). A 
calculation of the integral [13] leads to Dyson expression [ 5 ] :  

sin2 re d sin re 
- S G o 5 ( E , r ) = 1 - - - -  1 ( - r, ) j lm+dt  r , = a r p ( E ) .  
P ' (E)  r: dr,  

So, the Dyson universality hypothesis seems to be proved for the case of sparse random 
matrices. However, the following contradiction arises at this point. Indeed, as previously 
mentioned, the infinite cluster is absent when p < p c =  1 .  Therefore, the correlator 
S,,.(E, r )  has to vanish. On the other hand, as the DOS is finite, (42) and (44) give a 
non-vanishing value of S,,.(E, r ) .  To analyse this question let us investigate the 
analytical properties of the solution of (31) when p << 1. Using an expansion in powers 
of p we have in close analogy with (21) and (22): 

g=g"g'"+p~g'2'+., . 

Considering, for the sake of convenience, the distribution h ( r )  to be Gaussian 

we get the following expression for g''': 

We can see that apart from its sing,lar point (E  = 0 and ++f+ = 0) the function g'"(+) 
depends on the invariant y = ++L+ only and is independent of x = +++. p a t  is why 
it proves to be invariant with respect to rotations generated by the matrices T satisfying 
condition (32). It is easy to make sure that such an invariance holds for higher order 
terms in the expansion (45) as well. So there is a single (invariant) saddle-point only 
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contributing to ( Z ( E ,  r, J ) )  that leads to the vanishing of the connected part of the 
level correlator S,,,(E, r). 

Meanwhile, expanding the function g'O'(+) to second order terms in + we get 

g ( o ) ( + )  = I + + i ( ~ + i & i ) - l + + 0 ( + 4 ) .  2a (47) 

We see that now g'"(+) depends on both invariants x and y this leads according to 
(42) to the correct expression for p'" ' (E)  = S ( E ) .  Thus, in spite of the invalidity of the 
expansion (47) for E -f 0, this way results in a valid expression for the DOS. 

The situation is quite analogous for the higher order terms in p as well. The function 
g ( + )  is singular for ++i+ = 0 and energy E lying in a spectrum of the matrix fi. When 
calculating the DOS, we can consider the energy E to have an imaginary part and 
expand g(+) as a power series in + along lines similar to (47). If we now let E tend 
to the real axis, the coefficient of +++ in that expansion gives the correct value of p ( E ) .  

When calculating the correlation function K ( E ,  r )  we have, in contrast, to consider 
the energy E to be a real number from the very beginning, which invalidates an 
expansion analogous to (47). As we have seen previously, the true function g(+) does 
not depend on +++, which means the level correlations vanish. 

To analyse the situation at p >  1 we use the relationship between the sparse RM 
model and the Anderson model on the Bethe lattice, characterized by the Hamiltonian: 

(48) 1.. = f *  f i = x  E ; C T C j + E  t+'tCj 'I I' ' 
(N 

For the sake of simplicity we take the diagonal matrix elements of the Hamiltonian 
of the Anderson model to be equal to zero. As to the nearest-neighbour matrix elements 
' U ,  W G  W V U l "  C U I I D I U S I  L11Glll L" uc ,=a ruGlrrrcd.rry U L D L l , " " L C U  Lalluulll IIIlIILVc-Ib Wll,,  a 
distribution function h ( t ) .  Moreover, let us now consider the branching number of the 
lattice at any site to be a random variable independently distributed according to 
the Poisson law with a mean value equal to p. It is clear that any non-trivial distribution 
of diagonal elements could be easily included within the scope of the supersymmetric 
approach in this as well as the R M  model. Using this approach we introduce an 
eight-camponen: supervec!a: +, ~t rvr:y !a!:ice site i and de5nc t h ~  partitlo:: F~fictian 
analogously to (28). Let GI(+) denote the result of integrating out all variables 
+ attached to sites belonging to Ith branch of the lattice originating in a site 
i ( I  = 1,. . . , k i ;  k,-branching number of the lattice in the site i). Then function G(+j ) ,  
site j being the neighbour of site i towards the origin of the Bethe lattice, is given in 
terms of GI(+;) by the following expression: 

. ... ̂...̂ ..,-I -....":A..-*!---. .,. L" -...., :A"-.:--,,.. >:...-:L...-A _ ^ _ _ I ^ _  _.._LA-- - 

ki 

G(+j,) = 1 [ d h l  exp[i E+tibj -(&/2)+:4~~] e x ~ [ i t , + f i + ~ l  1-1 Il Gd+J. (49) 

Averaging this equation over'.disorder and assuming that, after averaging, all the sites 
of the Bethe lattice are equivalent, we easily get the self-consistent equation for 

GAS)= [d+l&++&) exp(i  E+'i+-(&/2)+'++p[G.(+)-ll]. (50) 

It is easy to make sure this equation coincides with (31) if we denote g ( + )  = Go(+)  - 1 
and take into account that the denominator in (31) is equal to unity. 

4 ( 4 )  = ( G ( +  1): 
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So, the sparse RM model is intimately related to the Anderson model on the Bethe 
lattice with a random Poisson-like local branching number. The local topological 
equivalence between a randomly branching tree and a structure of infinite cluster of 
sparse R M  model was pointed out in [16]. The reason for such an equivalence is that 
every closed loop in such an infinite cluster includes of order of log N sites with the 
probability one. So, the existence of the loops could be neglected when N + w. 

As is well known [ S I ,  there is the localization transition in the Anderson model 
on the regular Bethe lattice (see also [24] and [26], where such a transition was studied 
in the frame of the supersymmetric nonlinear u-model, which differs from the original 
Anderson model in view of the DOS being constant independent of the energy). In our 
approach it manifests itself in the following way [30]. If we consider the regular Bethe 
lattice with branching number k, the self-consistent equation would be analogous to 
(50) with G*(+) substituted for expp[G.(+)-1] on the right-hand side. Within the 
localized phase this equation at E + O  has a single invariant solution G ( + )  depending 
only on ++i+. At the transition point spontaneous breaking of the invariance occurs 
and a set of non-invariant solutions appears, which leads to the Goldstone (diffusion) 
form of the density-density correlator (cf [24,26]). 

The close similarity of the two models suggests that an Anderson transition also 
exists in the sparse RM model. Using a series expansion in powers of l l p  it can he 
easily shown that at p > > l  (31) has a set of non-invariant solutions gT(+ ) ,  that are 
non-singular at + = 0. To the leading order in l l p  it has the form: 

This manifold of saddle-points has the form described by (33). We conclude, that the 
localization transition in the sparse RM model occurs with a decrease in the connectivity 
p at some value pI > 1 (energy E and distribution h ( z )  being fixed). 

The main difference from the Bethe lattice is the existence of finite clusters. As a 
result, at p >  1 the function g(+) is a sum of the finite cluster contribution g d + )  
(given by a series in powers of p, (45)) and the infinite cluster contribFtion gi,X+). At 
1 < p < p l  both gfi.(+) and ginr(+) are invariant, i.e. depend on ++L+ only. As it is 
easy to show, this leads to the following expression for the correlator: 

resulting in the vanishing of S,,.(E, r ) .  

delocalized states emerging on the infinite cluster. We get correspondingly 
At p > p I  the function ginr(+) ceased to be invariant, which corresponds to the 

where the second term is the Dyson correlation function with the full DOS p(  E )  replaced 
by the contribution to it from the infinite cluster, which could be found by inserting 

Qualitative arguments in favour of the vanishing of level correlations in localized 
phase were presented in [ 131. This effect was recently observed by computer simulation 
of the two-dimensional disordered tight-binding model with spin-orbit coupling [27]. 

gj.X+) into (42). 
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The question about energy-level correlation in disordered samples was also addressed 
in [28] .  

4. Conclusion 

To study the statistical properties of the sparse RM model we used the supersymmetric 
appLvaw auu V V ~ C I V C U  U U ~ C  sirrrirairry VCLWCCII LIIL. mvuci UI~UCL ~uiisiu~raiiuii niiu 

the Anderson model on the Bethe lattice: in both models there is a delocalization 
transition manifesting itself as the spontaneous breaking of UOSP(2,2/2,2) global 
invariance by the solution of the basic integral equation. 

Depending on the value of the 'mean connectivity' parameter p the behaviour of 
the system changes crucially. At p <  1 there are only finite clusters. At 1 < p < p , , p ,  

the eigenvectors of the corresponding random matrices are localized, which results 
in the absence of eigenvalue correlations. At p >  pI delocalized eigenstates emerge and 
the connected correlator of level densities S,,.(E, r) acquires the Dyson form with the 
full DOS replaced by the contribution from the infinite cluster. 

I t  would be interesting to study in more detail the properties of the sparse R M  
mode! in !he vidni!g of !hp !ransi!ion point p;  within the scope nf !hp s~~rsymme!r ic 
approach as well as by direct computer simulation. We also hope that the supersym- 
metric approach could be useful for investigating the statistical properties of other 
classes of RM, e.g. asymmetric random matrices [29], which are relevant to neural 
networks and quantum chaos problems. We consider all this to be the prospect of 
future investigations. 

^___^^^I_ ..-A "L _I ^I^^^ _:_:,^_:._. L .L. - _ A _ ,  ---.:I ..-. :-.. ^--I 

h&-n thn r l n l n r s l i w n r i m -  + r o n o : + i ~ n  " m i n t  """'6 ...I "II"IU,IL.oLL,"II  ,.Y..I.I.".L p".'.L, :he infini:e c!us:e: ah= el;is:s, b.;: a!! 
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Note added in proof As was pointed out to us by Professor M R Zirnbauer, if the functional integral in 
( I O )  is to be well defined, then it should be restricted to all even functions that vanish at the origin. This 
restriction doer not invalidate our derivation since the saddle-point solution g ( 6 )  does possess both of these 
propenier. 
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